logo-fast uniblau klein.png

IRTG / Soft Matter Science
Freiburger Materialforschungszentrum
Stefan-Meier-Str. 21
79104 Freiburg, Germany


|    Flyer   |   Poster   |

You are here: Home Events Prof. Virgil Percec "A Materials Genome Approach to the Discovery of First Biological Principles"

Prof. Virgil Percec "A Materials Genome Approach to the Discovery of First Biological Principles"

— filed under:

Roy & Diana Vagelos Laboratorie, Department of Chemistry, University of Pennsylvania, Philadelphia, USA

  • Seminar
When May 19, 2014
from 11:15 AM to 12:00 PM
Where Seminarraum B, FMF, Stefan-Meier-Str. 21, Freiburg
Add event to calendar vCal

A materials genome approach to the discovery of first biological principles and their use in the design of programmed primary structures that are instructed to undergo intramolecular and intermolecular self-assembly, self-organization and the other sequences of events involved in the emergence of biological homochiral complex functional systems will be presented (1,2,3). Materials genome uses the first principles commonly employed in biology to design the tertiary structure responsible for a particular function. Since the mechanism of transfer of structural information is not understood, theoretically the primary structures responsible for the creation of complex functional systems characterized by adaptation, self-control, self-organization, emergence, self-repair and memory, cannot be designed. This lecture will address a series of fundamental questions. Why are biological systems homochiral (2a,b,c,d)? What is the origins of biological homochirality and how did it emerge (2e)? Can non-homochiral systems with the level of precision of biological homochiral systems be designed? Finally achiral and chiral mimics of biological cell membranes and their use in biomedical applications including glycan-ligands for sugar-binding proteins (lectins), and drug delivery devices will also be discussed (3).

(1) (a) Rosen, B.M.; Wilson, C.J.; Wilson, D.A.; Peterca, M.; Imam, M.R.; Percec, V. Chem. Rev. 2009, 109, 6275-6540.
(2) (a) Percec, V.; Dulcey, A.E.; Balagurusamy, V.S.K.; Miura, Y.; Smidrkal, J.; Peterca, M.; Edlund, U.; Hudson, S.D.; Heiney, P.A.; Hu, D.A.; Magonov, S.N.; Vinogradov, S.A. Nature 2004, 430, 764-768. (b) Rosen, B.M.; Peterca, M.; Morimitsu, K.; Dulcey, A.E.; Leowanawat, P.; Resmerita, A.-M.; Imam, M.R.; Percec, V. J. Am. Chem. Soc. 2011, 133, 5135-5151. (c) Roche, C.; Percec, V. Israel J. Chem. 2013, 53, 30-44. (d) Rosen, B. M.; Roche, C.; Percec , V. Top. Curr. Chem. 2013, 333, 213-253. (e) Roche, C.; Sun, H.-J.; Prendergast, M. E.; Leowanawat, P.; Partridge, B. E.; Heiney, P. A.; Araoka, F.; Graf, R.; Spiess, H. W.; Zeng. X.; Ungar, G.; Percec, V. J. Am. Chem. Soc. 2014, DOI: 10.1021/ja5035107.
(3) (a) Percec, V.; Wilson, D.A.; Leowanawat, P.; Wilson, C.J.; Hugh, A.D.; Kaucher, M.S.; Hammer, D.A.; Levine, D.H.; Kim, A.J.; Bates, F.S.; Davis, K.P.; Lodge, T.P.; Klein, M.L.; DeVane, RT.H.; Aqad, E.; Rosen, B.M.; Argintaru, A.O.; Sienkowska, M.J.; Rissanen, K.; Nummelin, S.; Roponen, J. Science 2010, 328, 1009-1014. (b) Peterca, M.; Percec, V. Leowanawat, P.; Bertin, A. J. Am. Chem. Soc. 2011, 133, 20507-20520. (c) Percec, V. et al. J. Am. Chem. Soc. 2013, 135, 9055-9077. (d) Percec, V. et al. ACS Nano 2014, 8, 1554-1568. (d) Percec, V. et al. Proc. Natl. Acad. Sci USA. 2014 in press. (e) Percec, V. et al. Angew. Chem. Int. Ed. 2014, in press.

Personal tools