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Motivation

Polyelectrolyte multilayers

Polyelectrolyte multilayers are versatile surface architectures that led
to advances in biosensors, selective membranes, or photovoltaic devices,
to name a few.

Polyelectrolyte brushes are interesting
starting materials for layer-by-layer processes
and provide ways to control the thickness of
each individual layer over a wide range.
However, brushes are meta stable systems and

chains may degraft upon osmotic drag during

complexation.

Crosslinked systems, i.e. surface-attached )
polyelectrolyte networks (SAPNs), may & 5
provide the necessary stability but little is 5
known about their interaction with small and

large electrolytes in solution.

PEL multilayers based on PEL brushes and SAPNs:
Stability — Multilayer build-up - Conformational features
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Surface-attached
polyelectrolyte networks

Synthesis

SAPNs were prepared from
prepolymers carrying
crosslinker units, e.g.
styrene sulfon azides
(SSAZ).

Crosslinking occurs via C,H
insertion reactions. \
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Dissociation of weak SAPNs

Fiting of FTIR absorbance spectrum

The dissociation of weak poly(methacrylic acid)
layers was studied using ATR-FTIR in D,0.
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Adsorption of PELs

Adsorption of PAH and PEI to PMAA SAPNs Significant pick-

up of material at

long adsorption
times.

~=-PAH 0.005 M, t, = 100 nm
= PEI0.02 M, t, = 400 nm

Conditions:
SAPN: pMAA-6.5-SSAz
c(PEI) = 0.02 mol/I,
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SAPNs swell less than the corresponding
free gels = high segment density /
strong self screening.
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Stability of PEL brushes

PEL brushes respond remarkably strong to their environment, e.g. by
swelling to a multiple of their dry layer thickness. This strong osmotic
pull on the surface anchors often leads to degrafting - entropic death.

Entropic death
monitored by
subsequent decrease
in thickness:
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PEL brushes were subjected to
an osmotic shock. Degrafted
polymers were collected and
analyzed by GPC. =4
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Multilayer investigations
PEL brush & SAPN templates

PMAA and PMeVP brushes and PMAA-SAPNs were used as starting
layers for LbL processes.

> 4+ brush 1, oy thickness 55 nm
3 [+ brush 2, dry tickness 108 nm

SAPN mol.% SSAz
~+-2.3,dry tickness 106 nm
-+-14, dry hicknoss 107 am
4-21, dry thickness 165 am

°l PMAA SAPN
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Neutron reflectometry

Reflectometry scan and SLD profile of a dipped (PSS-PAH) film
measured on N-REX in FRM II.

o Layer pair | Thickness (R) | SLD (x10°¢ A-2) | Roughness (R)
R (PSS,;-PAH) 51.9 1.24 16.1
"
(PSS,;-PAH) 51.9 3.23 16.1
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Determination of size perpendicular to the surface: radius = 4 nm.

GISANS/SANS

On left, a dipped (PSS-PAH) film measured by GISANS (FIGARO / ILL).
On right, preliminary data of a dipped (PMAA-PMeVP) film on a PMAA
brush layer and a dipped (PSS-PAH) film measured by SANS on GP-
SANS in HFIR.
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Determination of size parallel to the and
surface: radius = 23 nm. Different SANS curves for brush

Flattened coil conformation for and non-brush films < Different
(PSS-PAH) film.

Conclusions

Interaction between PEL brushes and SAPN and free PELS is the result of a
complex interplay of thermodynamic and kinetic parameters.

structure expected
Charge compensation leads to strong changes in solubility / swelling
which leads to an arrest of non-equilibrium conformations.

Surface attached PEL brushes and SAPNs are meta-stable architectures:
Entropic death.




